Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Quan-Zheng Zhang and Can-Zhong Lu*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: czlu@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
H -atom completeness 78\%
R factor $=0.018$
$w R$ factor $=0.047$
Data-to-parameter ratio $=11.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[diaquamanganese(II)]- μ-imino-diacetato- $\left.\kappa^{4} O, N, O^{\prime}: O^{\prime \prime}\right]$

In the title complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the octahedrally coordinated Mn atom is bonded by three carboxyl O atoms, one imino N atom and two water molecules. By means of the bridging iminodiacetate ligand, the title complex exhibits a one-dimensional chain structure, with $\mathrm{Mn} \cdots \mathrm{Mn}$ distances of 5.362 (1) \AA.

Comment

As one of the dicarboxylate ligands containing N-donors, iminodiacetic acid can act as a potential bifunctional ligand with variable multidentate coordination modes. For instance, a series of iminodiacetate (ida) complexes of Fe (Walters et al., 2003), Co (Junk \& Smith, 2002), Ni (Agre et al., 1984) and Cu (Tribet et al., 2003) have been isolated and structurally characterized. Among these complexes, many display polymeric structures in which the ida ligands generally adopt tetra- or pentadentate coordination modes. We report here the synthesis and crystal structure of a polymeric Mn-ida complex, viz. catena-poly[[diaquamanganese(II)]- μ-iminodiacetato], (I).

(I)

As shown in Fig. 1, the Mn atom in (I) is coordinated by five O atoms and one N atom; two O atoms are from coordinated water molecules, with $\mathrm{Mn}-\mathrm{O}$ distances of 2.245 (1) and 2.183 (1) \AA, three O atoms are from carboxyl groups, with $\mathrm{Mn}-\mathrm{O}$ distances of 2.272 (1), 2.155 (1) and 2.122 (1) \AA, and the N atom is from the ida ligand, with an $\mathrm{Mn}-\mathrm{N}$ distance of 2.274 (1) A (Table 1). The ida ligand displays a tetradentate coordination mode through three carboxyl O atoms ($\mathrm{O} 1, \mathrm{O} 2$ and O 3) and the imino N atom. Similar to the reported ida complex of Co (Burshtein \& Poznyak, 2000), the title complex exhibits a one-dimensional chain structure (Fig. 2), with $\mathrm{Mn} \cdots \mathrm{Mn}$ distances of 5.362 (1) \AA.

Experimental

To a solution of iminodiacetic acid (0.6 mmol), $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.5 mmol) and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added an aqueous NaOH solution $(1 \mathrm{~N})$ to adjust the pH value to $4-5$; ethanol $(5 \mathrm{ml})$ was then added. After stirring for 30 min , the mixture was allowed to stand at room

Received 12 July 2004 Accepted 21 July 2004 Online 31 July 2004
temperature undisturbed for about three weeks, resulting in colorless crystals.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=222.06$
Orthorhombic, $P_{\text {P }}{ }_{2}$
$a=14.535$ (3) \AA
$b=5.340$ (1) \AA
$c=9.731(2) \AA$
$V=755.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.953 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.557, T_{\text {max }}=0.840$
5189 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.047$
$S=1.04$
1536 reflections
134 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 2942
reflections
$\theta=2.1-27.5^{\circ}$
$\mu=1.74 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.37 \times 0.23 \times 0.10 \mathrm{~mm}$

1536 independent reflections
1502 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-18 \rightarrow 18$
$k=-6 \rightarrow 6$
$l=-12 \rightarrow 9$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0337 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.018$
$\Delta \rho_{\max }=0.44 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0011 (3)
Absolute structure: Flack (1983)
Flack parameter $=0.006(13)$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{Mn} 1$	$2.2738(14)$	$\mathrm{Mn} 1-\mathrm{O} 6$	$2.1829(12)$
$\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.1221(12)$	$\mathrm{Mn} 1-\mathrm{O} 5$	$2.2452(12)$
$\mathrm{Mn} 1-\mathrm{O} 3$	$2.1547(12)$	$\mathrm{Mn} 1-\mathrm{O} 1$	$2.2718(13)$
O2 $^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 3$	$88.83(5)$	$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{O} 1$	$158.19(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 6$	$113.12(5)$	$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O} 1$	$83.85(5)$
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 6$	$96.37(5)$	$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1$	$155.03(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 5$	$94.87(5)$	$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{N} 1$	$77.00(5)$
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 5$	$173.82(5)$	$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 1$	$89.10(5)$
$\mathrm{O}^{2}-\mathrm{Mn} 1-\mathrm{O} 5$	$86.75(5)$	$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{N} 1$	$97.76(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1$	$87.31(5)$	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$72.80(5)$
$\mathrm{O}^{2}-\mathrm{Mn} 1-\mathrm{O} 1$	$91.39(5)$		

Symmetry code: (i) $1-x,-y, z-\frac{1}{2}$.
The H atom on the N atom was positioned geometrically $(\mathrm{N}-\mathrm{H}=$ $0.91 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. H atoms attached to C atoms and the coordinated water atom O 6 were located in a difference Fourier map and refined with isotropic displacement parameters. Other H atoms were not located.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1
A perspective view of the locally expanded unit in (I). Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (A) $\left.1-x,-y, z-\frac{1}{2}\right]$.

Figure 2
The one-dimensional chain structure of (I). H atoms have been omitted for clarity.

SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

References

Agre, V. M., Sisoeva, T. F., Trunov, V. K., Dyatlova, N. M. \& Fridman, A. Y. (1984). J. Struct. Chem. 25, 297-303.

Burshtein, I. F. \& Poznyak, A. L. (2000). Crystallogr. Rep. 45, 422-423.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Junk, P. C. \& Smith, M. K. (2002). J. Coord. Chem. 55, 1091-1096.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tribet, M., Covelo, B., Choquesillo-Lazarte, D., González-Pérez, J. M., Castiñeiras, A. \& Niclós-Gutiérrez, J. (2003). Inorg. Chem. Commun. 6, 343-345.
Walters, M. A., Vapnyar, V., Bolour, A., Incarvito, C. \& Rheingold, A. L. (2003). Polyhedron, 22, 941-946.

